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Abstract Presents a numerical solution of the two-dimensional laminar boundary layer problem
on free and forced convection of an incompressible visco-elastic fluid immersed in a porous medium
over a stretching sheet. Here, the driving force for the flow is provided by an impermeable sheet
stretched with a velocity proportional to the distance from a sht and buoyancy effects due to both
temperature and concentration gradients. The resultant governing boundary layer equations are
highly non-linear and coupled form of partial differential equations, and they have been solved by
employing a numerical shooting technique with fourth ovder Rumge-Kutta integration scheme.
Numerical computations are carvied out for the non-dimensional physical parameters. The results
are analyzed for the effect of different physical parameters like visco-elasticity, permeability of the
porous medium, Grashof number, Schmidt number and Prandtl number on the flow, heat and
mass transfer chavacteristics. One of the several important observations is that the combined effect
of thermal diffusion and diffusion of species is to increase the horizontal velocity profile and to
decrease the temperature and concentration profiles in the boundary layer flow field.

Nomenclature
g = acceleration due to gravity G,,G. = Grashof number and modified
v = kinematic viscosity Grashof number respectively
k, = visco-elastic parameter Pr,Sc = Prandtl number and Schmidt
4 = permeability coefficient of porous number respectively
medium Tw = local skin friction parameter
G*3* = volumetric thermal coefficient N,,S;, = Nusselt number and Sherwood
and concentration coefficient number respectively
respectively a,Byy = correct initial values of
ABE = constants in equation (5) /3(0), 6,(0), $2(0) respectively
1 = characteristic length B vn = n™ iterative values of «, 3, ~
k1, ko = visco-elastic parameter and respectively
porosity parameter f,0,¢ = dimensionless values of velocity,
respectively temperature and concentration
respectively.
Introduction

In recent years, a great deal of interest has been generated in the area of

two-dimensional boundary layer flow over a continuous moving solid surface, in

view of its numerous and wideranging applications in various fields like | . .
R R . A R nternational Journal of Numerical

aerodynamic extrusion of polymer sheets, continuous stretching, rolling and  Methods for Heat & Fluid Flow,

. . . e . . . . Vol. 11 No. 8, 2001, pp. 779-792.
manufacturing of plastic films and artificial fibers. Sakiadis (1961) was the first © mcB University Press, 09615539
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amongst others to study such problem by considering the boundary layer viscous
flow over a continuous solid surface moving with constant velocity. This work is
followed by the pioneering work of Crane (1970), in which the flow is caused by
an elastic sheet moving in its own plane with a velocity varying linearly with the
distance from a fixed point. There are several extensions to this problem, which
include consideration of more general stretching velocity and the study of heat
transfer (Chen and Char, 1988; Dutta ef al.,, 1985; Gupta and Gupta, 1977).

Since most of the fields considered in these applications are of non-Newtonian
nature, this study has been channelised to the field of non-Newtonian fluids
obeying their constitutive stress-strain relations. In certain polymer processing
applications, such as 5.4 percent solution of polyisobutylene in cetane and 0.83
percent solution of ammonium alginate in water (Acrivos, 1961), the visco-elastic
fluid flow occurs over a stretching sheet. In view of this application, Rajagopal et
al. (1984) have studied the flow behaviour of a visco-elastic fluid over a stretching
sheet and gave an approximate solution for the flow. Dandapat and Gupta (1989)
have discussed the flow of an incompressible second order fluid over a stretching
sheet and obtained an analytical solution of the non-linear constitutive equation.
Rollins and Vajravelu (1991) have extended the above work to the cases when:

the boundary sheet is maintained with prescribed surface temperature
(PST); and

the boundary sheet is maintained with prescribed heat flux (PHF).

Lawrence and Rao (1992) have discussed the physically realistic solution
among the two closed-form solutions obtained from the momentum equation.
Rao (1996) has studied the flow of a second-grade fluid and showed the
uniqueness of such flow over a stretching sheet. Siddappa and Abel (1985) have
analysed the flow of a visco-elastic fluid obeying Walters’ model past a
stretching sheet. The same study is further channelised to the flow through
porous medium by Gupta and Sridhar (1985) and Abel and Veena (1998)
without considering the heat and mass transfer phenomena. However, the heat
and mass transfer phenomena in a porous medium find their applications in
various engineering disciplines such as geothermal fields, soil pollution and
nuclear waste disposal. The study of convection in a visco-elastic fluid flow
through a porous layer has application in the production of heavy crude oils
(Rudraiah et al 1989). Rudraiah et al. (1989) have investigated visco-elastic fluid
flow of the type Oldroyd fluid through a porous layer heated from below. Also,
in some industrial transport processes, the driving force for the flow is
provided by the combination of thermal and chemical species diffusion effects.
Such situations arise in applications such as the curing of a plastic and the
manufacture of pulp-insulated cables. Hence, the study of the above intricate
problem, taking into account the combined buoyancy effects of both thermal
diffusion and diffusion of chemical species, is of vital significance. The
available literature on heat and mass transfer through porous medium
(Bestman, 1989, 1990; Vajravelu, 1994) reveals that such study is not being
carried out into the flow of short memory fluid of the type Walters’ liquid B.



Recently, Prasad et al (2000) have investigated the problem of visco-elastic
fluid (Walters’ liquid B) flow through porous medium without mass transfer.

Hence, in the present paper, we make an attempt to investigate the problem
of convective heat and mass transfer of Walters’ liquid B embedded in a porous
medium over a stretching sheet. The presence of combined buoyancy effects
leads to the momentum, heat and mass transfer equations in the coupled form
of highly non-linear partial differential equations. To deal with the coupling
and non-linearity, a numerical shooting technique for three unknown initial
conditions with Runge-Kutta fourth order integration scheme has been
developed. The results are analysed for various values of non-dimensional
parameters on heat and mass transfer characteristics.

Mathematical formulation

Consider the flow of a visco-elastic fluid (Walters’ liquid B) through a porous
medium of permeability K’ over a semi-infinite stretching sheet coinciding with
the plane y = 0. The flow is generated, due to stretching of the sheet, caused by
the simultaneous application of two equal and opposite forces along the x-axis.
Keeping the origin fixed, the sheet is then stretched with a speed varying
linearly with the distance from the slit. Buoyancy effects due to both
temperature and concentration gradients and stretching of the wall provide the
driving force for the flow. Under these assumptions and neglecting Soret and
Dufour effects, the basic boundary layer equations governing the flow, heat
and mass transfer, in usual notations, are:

ou v
T 1
6x+8y 0 (1)
ox a2 U\ oxdy2 | 3 OxonE Oy oxdy
v
— g +gB (T — Tx) +887(C - Cx) (2)
ox Ay pcy Oy*

oC oC 52C
—~4ty9—=D—. 4
uc‘)x—H}(?y 0y? 4)

Where u, v are velocity components, 7 and C are, respectively, the temperature
and concentration of chemical species in the fluid, g is the acceleration due to
gravity, v is the kinematic viscosity, &g is the non-Newtonian visco-elastic
parameter, k' is the permeability coefficient of porous medium, S8* is the
volumetric coefficient of thermal expansion and (** is the volumetric
concentration coefficient. Other quantities have their usual meanings.
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The boundary conditions governing the flow are:
u=bx,v=0,C=Cy+Ax/l), T=Ty=Ts+B(x/I)(PST Case)
—kTy=q,=E(x/l)(PHF Case) at y=0 (5a)

u—0, uy—0, T—- T, and C—Cyas y— (5b)

To take into account the effect of stretching of the boundary sheet, and the
effects due to temperature and concentration gradients, we prescribe the wall
boundary conditions in the form of (5a). In order to study the heat transfer
analysis we consider two general cases of non-isothermal temperature
boundary conditions, namely:

(1) boundary with prescribed power law surface temperature (PST); and
(2) boundary with prescribed power law heat flux (PHF).

The faraway boundary conditions are taken in the form (bb), as free stream
velocity is assumed to be zero, T, and C,, are being free stream temperature
and free concentration respectively. Here b > 0 is known as stretching rate. The
subscript ¥ denotes the differentiation w.7.£. y. Now, we introduce the following
dimensionless variables:

T-Ty  C—-Cy
u=">bxf, (n), v=-vbvf(n), Q(U)va ¢(77)—Cw_coo7
X . x
where T, — T, =B (Z) wm PST Case , C,— Cy :A<7)

E v /x . b
=7 /5 (?> in PHF Case and n= \/;y (6)

With these changes of variables equation (1) is identically satisfied and
equations (2)-(4) are transformed to

fs_f fr]r] :fmm _kl {an frmn_f frmnr]_ fnzn }_kZ fn + G,,H—l— Gc¢ (7)

Op+Pr{f0,— 6%} =0 (8)
(bm] + Sc {f¢n - fn ¢ } =0 (9)
The corresponding boundary conditions take the form:
« PST case:
f:()v fn:l, 0 1, (25:1 at n =0

fo = fp=0 = ¢=0 as n — oo. (10)



- PHF case:
f=0 74=1 6, =-1, ¢o=1 atn =0
fi =0, fiy =0, 6=0, ¢=0 as n — oo

Where subscript 7 denotes the differentiation with respect to 7. k;, k, are the
visco-elastic and porosity parameters, G, and G. are the free convection
parameters, and Pr, Sc denote Prandtl number and Schmidt number
respectively. These dimensionless physical parameters are defined as:

k/b be b%x (12)

Pr= 7 and SCZ_)

Where expressions for T,, — T, and C,, — C, are given in equation (6). The
important physical quantities of our interest are the local skin friction “ry,’
Nusselt number “N,,” and Sherwood number “S,” and they are defined in the
sequel:

7_*

Tw =

. [Ou
—fm(0), where 7= (8y>y=0 (13)

h 6,(0) in PST Case
Nu =~ _TooT :{ ﬁ in PHF Case (14)
h
Si=-c—c G=a0. (15)

Numerical solution

Equations (7), (8) and (9) are highly non-linear, coupled, ordinary differential
equations. In order to solve them numerically, we adopt most efficient
numerical shooting technique with fourth order Runge-Kutta integration
scheme. Selection of the appropriate finite values of 7., is most important
aspect in this method. We select 1., following the procedure outlined in the
work of Abel et al. (2000). For different sets of physical parameters the
appropriate values of 7, are different.

The equations (7), (8) and (9) are solved numerically by following the
principle of superposition (Na, 1979). Here, the coupled boundary value
problem of fourth order in f, second orders in 6 and ¢, has been reduced to a
system of eight simultaneous coupled ordinary differential equations by
assuming f= fla fn :fZa fnr] :f3a fmm :f479 = 91a97] = 02,0 = ¢1, and
¢y = ¢o. In order to solve this resultant system we need to have eight initial
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conditions, whilst, we have only two initial conditions (f;(0) and f5(0)) on f, two
initial conditions one each on # and ¢ (6,(0), #1(0), k =1 in PST caseand k = 2 in
PHF case). The third initial condition on f (£4(0)) is obtained in terms of physical
parameters by applying the initial conditions of (10) and (11) in the equation (7)
(Lawrence and Rao, 1995). Since f5(0), 6,(0) and ¢»(0) (k = 1 in PHF case, k = 2in
PST case) are not prescribed, we start with the initial approximations as
£3(0) = ap, 0x(0) = [y, and ¢2(0) = . Let «, 5 and ~ be the correct initial
values of f3(0), 6,(0) and ¢5(0). Now we integrate the resultant system of eight
ordinary differential equations using standard fourth order Runge-Kutta
method and denote the values of f3,0, and ¢, at n = 7 by f3(ao, 5o, 70, 700),
ek(a07ﬁ0a7077700) and ¢1(a0750a7077700) reSpeCtively- Since f3, 6y and ¢ at
1 = 7)o are clearly functions of o, 3 and ~, they are expanded in Taylor series
around « — ayp, 8 — By and v — ~, respectively, retaining only the linear terms.
We use the difference quotients for the derivatives appeared in these Taylor
series expansions. Now, after solving the system of Taylor series expansions
for 6oy = o — ay, Béy = B — [y and b6yy = v — 7y We obtain the new estimates
a1 = ap+ bag, f1 = Po+ 60y and 1 = + 6y. The entire process is
repeated starting with f1(0), f2(0), a1, £4(0), 81,71 as initial conditions. Iteration
of the whole outlined procedure is continued with the latest estimates of «, 8
and ~ until the computed values at large distances coincide with the values of
prescribed boundary conditions. Finally we obtain oy, = an_1 + dan_1, Bn
= By1 +6Bn-1, Yn="Yp-1+ 6V, forn=1,2 3, ... as the desired most
approximate initial values f5(0), 6,(0) and ¢5(0). With this, now all the eight
initial conditions become known and so we solve the resultant system of
simultaneous eight equations by fourth order Runge-Kutta integration scheme
and get the profiles of f;, f5, 3, f4, 61, 6, ¢1 and ¢, for a particular set of physical
parameters. The method described above is the generalization of the method
outlined by Conte and de Boor (1986) to the case of three unknown initial
conditions. This is analogous to the modified Newton’s method of finding roots
of equations in several variables.

Results and discussion
The numerical computations have been carried out for various values of
visco-elastic parameter (k), porosity parameter (ky), Grashof number (G,),
modified Grashof number (G.), Prandtl number (Pr) and Schmidt number (Sc)
using numerical scheme discussed in the previous section. In order to illustrate
the results graphically, the numerical values are plotted in Figures 1-8. These
figures depict the horizontal velocity, temperature and concentration profiles
for both PST and PHF cases. Values of local skin friction (f,,(0)), Nusselt
number (N,) and Sherwood number (Sy,) in PST case are recorded in Table I.
Figures 1-3 are the graphical representation of horizontal velocity profiles
f,(n) for different values of k;, ks, G, and G.. Figure 1 provides the information
that the increase of visco-elastic parameter and permeability parameter leads to
the decrease of the horizontal velocity profile, in the absence of free convection
parameters G, and G.. This is because of the fact that the introduction of tensile
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t'(n) —

Figure 1.

Horizontal velocity
profiles, f' (n) vs. n for
different values of %;
and ky when G, = G, =0

stress due to visco-elasticity causes transverse contraction of the boundary layer
and the increase of porosity parameter ks leads to the enhanced deceleration of
the flow and hence, the velocity decreases. In Figures 2(a) and (b) horizontal
velocity profiles are shown for different values of Grashof number (G,) and
modified Grashof number (G,). Physically G, > 0 means heating of the fluid or

_— ks, =
(b) Gc =10 2
——= ky

u 1
N
o o

t'(n) ——>

Figure 2.

Horizontal velocity
profiles, f' (n) vs. n for
different values of
Grashof number

1 (@ G, =0 and

0 1 2 3 4 (b) G, = 1.0 in PST case
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Figure 3.

Horizontal velocity
profiles, f' (n), vs. n for
different values of
Grashof number

when (a) G, = 0 and

(b) G. = 1.0 in PHF case

(b) G =1.0 — k2= 0
- kz: 0.5

~

cooling of the boundary surface, G, < 0 means cooling of the fluid or heating of
the boundary surface and G, = 0 corresponds to the absence of free convection
current. This figure demonstrates that the increase of Grashof number leads to
the increase of horizontal velocity profile in the absence of species diffusion (G, =
0). This phenomenon is even true in the presence of species diffusion (G, = 1.0).
Increase of Grashof number (G,) means increase of temperature gradients (T.,-
T,), which leads to the enhancement of horizontal velocity profile due to
enhanced convection. Comparison of Figures 2(a) and (b) reveals that the
introduction of chemical species diffusion (G. # 0) leads to the increase of
horizontal velocity profile in both the cases of heating and cooling of the fluid.
This observation is true even in the presence of porosity parameter but with
reduced magnitude. This is because of the fact that the chemical species diffusion
takes place due to concentration gradients, which accelerates the movement of
the flow. Figures 3(a) and (b) depict the horizontal velocity profiles when the
surface heat flux is prescribed (PHF) with power law profile. The effects of all the
physical parameters are noticed to be qualitatively similar but quantitatively in
reduced magnitude.

In Figures 4-6, temperature profiles are plotted for the same quantitative
values of the physical parameters as those considered in Figures 1-3. It is
noticed from these figures that the temperature distribution is unchanged (unit
value) at the wall with the change of physical parameters in PST case (Figures
4 and 5). However, it changes with the change of physical parameters when the
wall is maintained with prescribed wall heat flux with power law profile
(Figure 6). The non-dimensional temperature distribution asymptotically
reduces to zero in the free stream in both the cases of PST and PHF in



(a) —_— k2=0
1.0 _——— k2=10

(a) — Pr =10 (b)

— Pr=10
10 ——— Pr =20

rl———)-

conformity with the assumed faraway boundary conditions. Figure 4(a) is
plotted for the effects of visco-elastic parameter and porosity parameter on

temperature distribution. It is observed that the increase of visco-elastic
parameter leads to the increase of temperature profile and this behaviour is
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Figure 4.
Temperature profile,

0 (n), vs. n for different
values of (a) &, and %,
when G, = G. = 0, and
(b) Prandtl number
when G, = G. = 0 and
k1 = 0.1 in PST case

Figure 5.
Temperature profile,

0 (n), vs. n for different
values of Grashof
number (a) G, = 0 and

() G. = 1.0 in PST case
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Figure 6.
Temperature profile,

0 (n), vs. n for different
values of Prandtl
number when

(@) G, = G, = 0.5 and
(®) G; = G, = 0 in PHF
case

even true in the presence of porous medium. This is consistent with the fact
that the thickening of thermal boundary layer occurs due to the increase of
non-Newtonian visco-elastic normal stress. Figure 4(b) reveals the effect of
Prandt]l number. It is seen that the increase of values of Prandtl number
decreases the temperature profile. Physically, it means that the thermal
boundary layer thickness decreases with the increase of the values of Prandtl
number. Figures 5(a) and (b) represent the effect of modified Grashof number
(Gy), that is, the effect of species diffusion in PST case. The effect of increasing
the values of modified Grashof number (G.) is to decrease the temperature
profile 8(n) for G, < 0. The effect of Prandtl number (Pr), porosity parameter
(ky), Grashof number (G,) and modified Grashof number (G.) on temperature
profiles in PHF case is shown in Figure 6. The combined effect of increasing the
values of Prandtl number, Grashof number and modified Grashof number is to
reduce the temperature profile significantly in the flow field and more
significantly on the wall.

The dimensionless concentration profiles are drawn in Figures 7 and 8.
Figures 7(a) and (b) show the dependence of concentration profile on Schmidt
number, visco-elastic parameter and porosity parameter. From Figure 7(a) we
observe that the visco-elastic and porosity parameters increase the
concentration distribution and it is unity at the wall. The concentration profile
approaches to a constant value as the distance increases. The effect of Schmidt
number (Sc) on the concentration distribution is to decrease the concentration
distribution in the boundary layer (Figure 7(b)). This is due to the thinning of
concentration boundary layer with the introduction of chemical species
diffusion. The behaviour of Grashof number and modified Grashof number is



$(n) —

graphically represented in Figure 8. It is noticed that the effect of Grashof
number (G,) is to decrease the concentration distribution as the concentration
species dispersed away largely due to temperature gradient. Comparison of
Figures 8a and b reveals that the effect of modified Grashof number (G,) is to
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Figure 7.
Concentration profile,
¢ (n), vs. n for
different values of

(@) %y and ks when

G, =G.=0and

(b) of Schmidt number
when G, = G, = 0 and
kl =01

Figure 8.
Concentration profile,

¢ (n), vs. n for different
values of Grashof
number when

(@ G. = 0 and

(b) G. = 1.0 in PST case
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Table 1.

Values of skin friction
parameter f,,(0),
Nusselt number 6,/(0),
Sherwood number
¢y(0) for different
values of % and k5 in
PST case

Sherwood number
ko (porosity)

Nusselt number
ko (porosity)

Skin friction
ko (porosity)

K; P. S G G 0.0 0.5 0.0 0.5 0.0 0.5
0.1 10 096 -05 00 -145259 -1.59789 -0.53805 —0.55453 0.51718 —0.5334
1.0 -0.78097 —-1.04765 -1.05634 -0.98609 -1.02949 -0.9578
00 00 -1.066 -1.3182 097420 —-0.77920 0.94568 -0.7482
10 054301 -0.81241 -1.09497 -1.0353 -1.06820 -1.0076
05 00 -0.78945 -1.05452 -1.05113 -0.97858 -1.02435 -0.9500
1.0 -0.30170 -0.58658 -1.12891 -1.07312 -1.10197 -1.0451
20 09 -05 00 -1.28543 -1.57697 -1.34445 -1.10061 -0.71832 -0.5504
10 -0.71406 -1.00117 -1.60621 -1.54291 -1.04879 -0.9841
00 00 -1.06669 —1.31824 -1.51492 —-1.43133 —0.94568 —0.7482
1.0 -0.54300 -0.812412 -1.62305 —-1.57136 —-1.06820 -1.0076
05 00 -0.85565 -1.11143 -1.55400 -1.48968 —0.99071 -0.8531
10 02838 06270 -1.67020 -1.59539 -1.07735 -1.0302
0.2 10 096 -05 00 -146252 -1.65523 -0.54692 —0.51197 —0.52572 —-0.4920
10 -0.8063 -1.08956 -1.04631 -0.97241 -1.01927 -0.9435
00 0.0 -1.11487 -1.36935 -0.94555 —0.73352 -0.91627 —0.7043
1.0 052679 —0.83369 -1.09242 -1.02947 -1.06580 -1.0023
05 0.0 -0.81905 -1.09900 -1.04092 —0.96960 -1.01482 -0.9416
1.0 -0.21751 -0.56731 -1.13417 -1.07116 -1.10635 -1.0429

decrease the concentration profile significantly in the case of cooling of the
fluid. This is because of the fact that concentration gradient accelerates the
dispersion of the species.

The values of skin friction parameter, Nusselt number and Sherwood
number for various values of physical parameters are recorded in Table I for
PST case. The skin friction is found to decrease with the increase of
non-Newtonian visco-elastic parameter k; as well as porosity parameter (ko) in
the absence of buoyancy effects. This result has significance in industrial
applications where power expenditure can be reduced in stretching the sheet by
increasing the visco-elastic parameter. From the table we observe that the effect
of G, is to decrease the Nusselt number and Sherwood number. This behaviour
is even true in the presence of chemical species diffusion (G, # 0).

Conclusions

Natural convective flows, heat and mass transfer due to the combined effect of
thermal and species diffusion in a visco-elastic fluid (Walters’ liquid B)
immersed in a saturated porous medium over a stretching sheet have been
investigated numerically. The effects of various physical parameters like
visco-elastic parameter, porosity parameter, Grashof number, modified
Grashof number, Prandtl number and Schmidt number on horizontal velocity,
temperature and concentration profiles are analyzed. The specific conclusions
derived from our study are summarized as follows:

« The increase of convective current (Grashof number, G,) leads to the
increase of horizontal velocity profile.



« The introduction of chemical species diffusion (modified Grashof
number, G.) leads to the increase of horizontal velocity profile in both the
cases of heating and cooling of the fluid. This observation is even true in
the presence of porosity parameter but with reduced magnitude.

« The combined effect of increasing the values of Prandtl number,
Grashof number and modified Grashof number is to reduce the
temperature profile significantly on the boundary sheet.

« The effects of free convection parameters (G, G. # 0) and Schmidt (Sc)
number are to decrease the concentration distribution in the boundary
layer.

+ Results of the some of the existing work (Abel and Veena, 1998;
Siddappa and Abel, 1985) may be deduced as limiting cases from our
results.
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